Lack of regulation of aromatic L-amino acid decarboxylase in intact bovine chromaffin cells.
نویسندگان
چکیده
Aromatic l-amino acid decarboxylase (AADC) is the second enzyme in the catecholamine biosynthetic pathway, and its activity is generally considered not to be limiting, and therefore not involved, in regulating flux through this pathway. Recent studies showing that its activity can be regulated in vivo and that the enzyme can be phosphorylated and activated in vitro have raised the possibility that AADC may play more than an obligatory role in catecholamine biosynthesis. In the present study, the phosphorylation and activity of AADC was evaluated relative to that of tyrosine hydroxylase (TH; the first and rate-limiting enzyme in the pathway) in intact bovine chromaffin cells. Treatment of chromaffin cells with elevated potassium, acetylcholine, phorbol dibutyrate, forskolin, or okadaic acid each increased 32P incorporation into TH (after metabolic labeling of ATP pools with 32P(i)) and TH activity. In contrast, as measured in matched samples, 32P incorporation into AADC was not detected and none of the treatments altered AADC activity. Thus, that AADC can be phosphorylated and activated in vitro has questionable physiological significance.
منابع مشابه
Laminin increases both levels and activity of tyrosine hydroxylase in calf adrenal chromaffin cells
We have investigated the effects of substrate-bound laminin on levels of enzymes of the catecholamine biosynthetic pathway in primary cultures of calf adrenal chromaffin cells. Laminin increases the levels of the enzymes tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyl-transferase. This effect is selective, in that levels of other enzymes (lactate dehydrogenase, ...
متن کاملLaminin Increases Both Levels and Activity of Tyrosine Hydroxylase in Calf Adrenal Chromaffin Cells
We have investigated the effects of substrate-bound laminin on levels of enzymes of the catecholamine biosynthetic pathway in primary cultures of calf adrenal chromaffin cells. Laminin increases the levels of the enzymes tyrosine hydroxylase, dopaminebeta-hydroxylase, and phenylethanolamine-N-methyltransferase. This effect is selective, in that levels of other enzymes (lactate dehydrogenase, ar...
متن کاملPurification of aromatic L-amino acid decarboxylase from bovine brain with a monoclonal antibody.
Aromatic L-amino acid decarboxylase was purified from bovine brain for the first time by affinity chromatography using a monoclonal antibody to the enzyme, and it was compared with the decarboxylase purified from bovine adrenal medulla by the same procedure. The monoclonal antibody was produced from a hybridoma established for the enzyme highly purified from bovine adrenal medulla. The Mr value...
متن کاملStereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture
Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...
متن کاملPlant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications.
A comprehensive survey of the extensive literature relevant to the evolution, physiology, biochemistry, regulation, and genetic engineering applications of plant aromatic L-amino acid decarboxylases (AADCs) is presented. AADCs catalyze the pyridoxal-5'-phosphate (PLP)-dependent decarboxylation of select aromatic L-amino acids in plants, mammals, and insects. Two plant AADCs, L-tryptophan decarb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 81 3 شماره
صفحات -
تاریخ انتشار 2002